

[image: C:\Users\becka\Desktop\ShrPt_h_rgb.png]

Estimate performance and capacity requirements for Office Web Apps

This document is provided “as-is”. Information and views expressed in this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it.
Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.
This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

© 2010 Microsoft Corporation. All rights reserved.

	

	Estimate performance and capacity requirements for Office Web Apps

	

In this article:
· Test farm characteristic
· Test results
· Recommendations
· Troubleshooting

This performance and capacity planning document provides guidance on the footprint that usage of the Office Web Apps has on topologies running Microsoft® SharePoint® Server 2010.
Each Office Web App has slightly different performance characteristics, leading to slightly different capacity characteristics to consider when planning a deployment. This document will describe characteristics for each app where they differ.
For general information about how to plan and run your capacity planning for SharePoint Server 2010, see Performance and Capacity Management.
[bookmark: section2][bookmark: _Test_Farm_Characteristic]Test farm characteristic
This section describes the workloads placed on the product during performance gathering, the hardware used during the testing and the topology for how that hardware was deployed, and some brief notes about the dataset used during the testing. Combined, these three aspects provide an overview of the performance of the Office Web Apps.
Workload
For the Word Web App and PowerPoint® Web App it is important to consider viewing documents separately from editing them, as these two modes are serviced differently by the server deployment and have different performance characteristics. In the OneNote® Web App, the distinction is much less and hence need not be made when considering capacity.
The list of workloads tested are:
· Viewing documents in the Word Web App and Viewing presentations in the PowerPoint Web App
· Editing documents in the Word Web App and Editing presentations in the PowerPoint Web App
· Viewing PowerPoint Broadcasts in the PowerPoint Web App as attendees
· Viewing/Editing OneNote Web App notebooks
The testing for these workloads was designed to help develop estimates of how different farm configurations respond to changes to the following variables:
· Mix of which Web Apps are used how often
· Effect of cache hit rate on viewing previously rendered documents/presentations
· Type of documents/presentations and expected mix of requests
It is important to note that the specific capacity and performance figures presented in this article will be different from the figures in real-world environments. The figures presented are intended to provide a starting point for the design of an appropriately scaled environment. After you have completed your initial system design, test the configuration to determine whether your system will support the factors in your environment.
Test definitions
This section defines the test scenarios and provides an overview of the test process that was used for each scenario. Detailed information such as test results and specific parameters are given in each of the test results sections later in this article.
Word Web App viewing
Each of the tests below were performed twice, once when the output format of the document was PNG, once when it was Silverlight. The exact mix of how much each test was used is included further below in the Test Mix section.
	Test name
	Test description

	Full Document Reading
	1. Open the document.
2. Scroll to the next page, pausing on each page.
3. Scroll to the last page.
4. Close document.

	Multiple Search And Read
	1. Open the document.
2. Scroll to a random page.
3. Execute a find command, navigate to a result.
4. Scroll to a random page.
5. Execute a second find command, navigate to a result.
6. Close document.

	Single Search And Read
	1. Open the document.
2. Execute a find command, navigate to a result.
3. Scroll to each subsequent page until end of document.
4. Close document.

	Wrong Document Read
	1. Open the document.
2. Scroll to second page.
3. Close document.t

	Print
	1. Print the document to PDF format.

Word Web App editing
	Test name
	Test description

	Full Editing
	1. Load the Word Editor.
2. Load the document.
3. Spell check the document and then pause.
4. Simulate typing – perform various saves & spelling requests with wait times in between.
5. Close the document.

PowerPoint Web App viewing
	Test name
	Test description

	Full Viewing
	1. Open the PowerPoint Viewer.
2. Load the presentation.
3. View the slide and pause
4. Continue to next slide and pause.
5. Repeat until end of presentation.

PowerPoint Web App editing
	Test name
	Test description

	Full Editing
	1. Open the PowerPoint Viewer.
2. Load the presentation.
3. View the slide, have a 75% chance to edit text object, and pause.
4. Continue to next slide, have a 75% chance to edit text object, and pause.
5. Repeat until end of presentation.
6. Close the presentation and save,

PowerPoint Web App Broadcast
	Test name
	Test description

	Full Broadcast
	1. Create a PowerPoint Broadcast from a presentation.
2. View each Broadcast in the PowerPoint Viewer with five different attendees.
3. Trigger viewing of the slide and pause.
4. Continue to next slide and pause.
5. Repeat until end of presentation.
6. End the Broadcast.

OneNote Web App
	Test name
	Test description

	Collaboration Scenario #1
	Sync interval is manipulated to be every 5 seconds.
1. Load Notebook.
2. Click on a new page and pause.
3. 1 minute worth of editing, followed by spell checking.
4. Another minute worth of editing and spell checking.
5. Insert an image.
6. Paste a large amount of data into the page, and spell check.
7. Make changes to pasted data.
8. Delete some content.

	Collaboration Scenario #2
	Sync interval is manipulated to be every 5 seconds.
1. Load notebook.
2. Periodically save the notebook at random intervals.

	Single User Scenario #1
	Sync interval is manipulated to be every 30 seconds.
1. Load Notebook.
2. Click on a new page and pause.
3. Make an edit that causes a time-based version to be pinned.
4. Two minutes worth of edits, followed by spell checking.
5. Insert an image.
6. Paste a large chunk of data into the page.
7. Delete some content.

	Single User Scenario #2
	Sync interval is manipulated to be every 30 seconds.
1. Load notebook.
2. Periodically save the notebook at random intervals.

Test mix

Word Web App viewing
	Solution name
	Output Format
	% in the mix

	Full Document Reading
	PNG
	9.75

	
	SL
	3.25

	Multiple Search and Read
	PNG
	40.5

	
	SL
	13.5

	Single Search and Read
	PNG
	17.25

	
	SL
	5.75

	Wrong Document Read
	PNG
	4.5

	
	SL
	1.5

	Print
	PDF
	4

Word Web App editing
	Solution name
	% in the mix

	Full Editing
	100

OneNote Web App
	Solution name
	% in the mix

	Collaboration Scenario #1
	5

	Collaboration Scenario #2
	5

	Single User Scenario #1
	45

	Single User Scenario #2
	45

PowerPoint Web App viewing
	Solution name
	% in the mix

	Full Viewing
	100

PowerPoint Web App editing
	Solution name
	% in the mix

	Full Editing
	100

PowerPoint Web App Broadcast
	Solution name
	% in the mix

	Full Broadcast
	100

Hardware setting and topology
Lab hardware
To provide a high level of test-result detail, several farm configurations were used for testing. Farm configurations ranged from one to six Web servers and a single database server computer that is running Microsoft® SQL Server® 2008 database software. Testing was performed with several client computers. All Web server computers and the database server were 64-bit, and the client computers were 32-bit. No other SharePoint Server-specific load was occurring during testing, and the only machines that were manipulated were those serving Web App requests.
This document focuses on the effect of the web front end machines as well as the app servers, and how their characteristics relate to Web App capacity.
The following table lists the specific hardware that was used for testing.
	Machine name
	WFE1-8
	App Servers
	SPSQL

	Role
	 WFE
	App
	SQL Server

	Processor(s)
	2 processors, 4 cores each @2.33 GHz
	2 processors, 4 cores each, @2.33 GHz
	4 processors, 4 cores each, @3.2 GHz

	RAM
	8 GB
	8 GB
	16 GB

	Operating System
	Windows Server® 2008 SP2 x64
	Windows Server 2008 SP2 x64
	Windows Server 2008 SP2 x64

	Storage & its geometry (including SQL Server disks configuration)
	6 + 75 + 590 GB
	6 + 75 + 590 GB
	6 + 75 + 460 GB

	# of NICs
	2
	2
	2

	NIC speed
	1 GB
	1 GB
	1 GB

	Authentication
	Basic
	NTLM
	NTLM

	Software version
	4753.1000
	4753.1000
	SQL Server 2008

	# of instances of SQL Server
	
	
	 1

	Load balancer type
	NLB
	
	

	ULS Logging level
	Medium
	Medium
	Medium

[bookmark: section3]
Topology
Different applications require different topologies. In some cases, where more than one machine role is required to fulfill a request, different topologies were tested where the ratio of front-end Web servers to application servers was varied. In these cases, in the tables below the “Bottleneck” column describes which tier ran out of headroom first, whether it was the front-end Web servers or the application servers. This information is useful when it’s known how heavy a deployment will be on its front-end Web servers– if there is a lot of load already on front-end Web servers, then deploying the Web Apps in a topology where the application servers run out of headroom first would result in the least amount of additional load placed on the front-end Web servers.
For Word Web App Viewing with no cache hits, PowerPoint Web App Viewing with no cache hits, PowerPoint Web App Editing, and PowerPoint Broadcast, an application server is necessary to render the document before it is displayed to the end user. The following shows a 1x2 topology, representing one front-end Web server to two application servers.
[image:]
For Word Web App Viewing serving cached documents or PowerPoint Web App Viewing serving cached documents, only a front-end Web serveris necessary. Similarly, Word Web App Editing and OneNote only require front-end Web servers. The following shows a basic topology with 1 front-end Web server that can handle these types of workloads (note that the application server would still be deployed and involved in serving Word Web App requests that are not already cached. The application servers are not drawn here to indicate which machines are necessary to service these types of requests).

Dataset
The dataset used for the Web App tests was a series of documents, all in Microsoft Office 2007 file format.
[bookmark: _Test_results]For Word, the documents used ranged in size from 10 to 216 KB, 1 to 30 pages, and 0 all the way up to 7000 words in length. Some documents were simple involving little formatting, while some were quite complex in the number of different styles and formatting used.
For OneNote, all tests began with new, blank workbooks which increased in size and complexity as the tests progressed.
For PowerPoint, the presentations used ranged in size from 250 to 1275 KB and contained on average 15 slides. The presentations similarly contained a range of different types of content.
Test results
The following tables show the test results of the Office Web Apps in SharePoint Server 2010. For each group of tests, only certain specific variables are changed to show the progressive impact on farm performance.
Note that the tests reported on in this article for the Word and OneNote Web Apps include think time, a natural delay between consecutive operations designed to simulate the pauses generated by a user as they examine the results of their last request to the server and determine the next request they will make. These included think times are only an approximation of what may be seen in a real-world environment.
For information about bottlenecks in the Office Web Apps in SharePoint Server 2010, see the Common bottlenecks and their causes section later in this article.
Word Web App viewing, no cache hits
The details below give an indication of results for a topology where the web front ends and the app server back ends are changed (that is, a 1x2 would be one front end with two app servers, all supported by an instance of SQL Server). The user count is an estimate on the number of users that are actively viewing a document using the Word Web App that the topology could support.
	Topology
	RPS
	Average Response Time
	Bottleneck
	Average WFE CPU
	Average App Server CPU
	SQL Server CPU
	# of active users supported

	1x1
	25
	0.2 seconds
	App Server
	8%
	48%
	2%
	860

	1x2
	33
	0.16 seconds
	HTTP throttling on front-end Web server
	8.5%
	38%
	2.5%
	1040

	2x2
	48
	0.16 seconds
	App Servers
	8%
	49%
	3.5%
	1600

	2x3
	64
	0.15 seconds
	HTTP throttling on front-end Web servers
	10%
	42%
	5%
	2100

	3x3
	65
	0.12 seconds
	App Servers
	7%
	45%
	5.5%
	2200

Word Web App viewing, all cache hits
Similar to above, this simulates performance when every document being requested has already been rendered and is in the Web App cache. Without having to re-render the document, the RPS and throughput increases, and the app server machine is not needed as the web front ends can serve the requests directly. Note that the Bottleneck column is removed, as in each case HTTP throttling is encountered.
	Topology
	RPS
	Average Response Time
	Average WFE CPU
	SQL Server CPU
	# of active users supported

	1 WFE
	24
	0.15 seconds
	11%
	2%
	990

	2 WFE
	33
	0.25 seconds
	7.5%
	2.5%
	1500

	3 WFE
	50
	0.25 seconds
	7%
	3.5%
	2250

	4 WFE
	80
	0.35 seconds
	10%
	4.5%
	3100

	5 WFE
	108
	0.05 seconds
	10%
	7.5%
	4400

Word Web App editing
When editing documents, only a web front end is required. Since heavy processing can happen during editing, there is a spectrum of how much load can be placed on a given set of machines. The ends of this spectrum are represented by the “red zone” and the “green zone”. Deploying the Web Apps and targeting performance characteristics as described in the Green Zone table below is recommended. In situations where you know the front-end Web servers will have very little work other than servicing Office Web App sessions, targeting performance characteristics closer to the “red zone” is reasonable.
Green Zone
	Topology
	RPS
	Average Response Time
	Average WFE CPU
	SQL Server CPU
	# of active users supported

	1 WFE
	285
	0.03 seconds
	50%
	3%
	240

	2 WFE
	292
	0.04 seconds
	50%
	8%
	540

	3 WFE
	330
	0.06 seconds
	50%
	12%
	720

 Red Zone
	Topology
	RPS
	Average Response Time
	Average WFE CPU
	SQL Server CPU
	# of active users supported

	1 WFE
	286
	0.04 seconds
	75%
	5%
	420

	2 WFE
	333
	0.08 seconds
	74%
	12%
	780

	3 WFE
	600
	0.14 seconds
	75%
	19%
	1200

OneNote Web App
When editing documents, only a web front end is required. As above, results are given for both the recommended Green Zone performance characteristics as well as upper limits specified by the Red Zone table.
Green Zone
	Topology
	RPS
	Average Response Time
	Average WFE CPU
	SQL Server CPU
	# of active users supported

	1 WFE
	97
	0.1 seconds
	50%
	9%
	1260

	2 WFE
	199
	0.15 seconds
	50%
	19%
	2520

	3 WFE
	275
	0.5 seconds
	50%
	30%
	3720

Red Zone
	Topology
	RPS
	Average Response Time
	Average WFE CPU
	SQL Server CPU
	# of active users supported

	1 WFE
	135
	0.4 seconds
	75%
	12%
	1700

	2 WFE
	250
	1.0 second
	75%
	28%
	3780

	3 WFE
	340
	1.0 second
	61%
	36%
	5160

PowerPoint Web App viewing uncached
When viewing a PowerPoint file in the Web App, the app server is used to render the file into the web viewer’s format. Renders are then placed in the Web App cache.
The details below give an indication of results for a topology where the web front ends and the app server back ends are changed (that is, a 1x2 would be one front end with two app servers, all supported by an instance of SQL Server). The user count is an estimate on the number of users that are actively viewing a document using the PowerPoint Web App that the topology could support.

	Topology
	RPS
	Average Response Time
	Bottleneck
	Average WFE CPU
	Average App Server CPU
	SQL Server CPU
	# of active users supported

	1x1
	90
	0.04 seconds
	App Server
	7.3%
	68%
	2.1%
	900

	1x2
	140
	0.045 seconds
	HTTP throttling on front-end Web server
	10%
	58%
	3%
	1500

	2x2
	158
	0.047 seconds
	App Server
	5.4%
	62%
	3.6%
	1500

	2x3
	200
	0.042 seconds
	App Server
	7.45%
	55%
	4.7%
	2100

	3x3
	192
	0.05 seconds
	HTTP throttling on front-end Web server
	4%
	66%
	5%
	2000

PowerPoint Web App viewing cached
Similar to above, this simulates performance when every document being requested has already been rendered and is in the Web App cache. Without having to re-render the document, the RPS and throughput increases, and the app server machine is not needed as the web front ends can serve the requests directly. Note that the Bottleneck column is removed, as in each case HTTP throttling is encountered.
	Topology
	RPS
	Average Response Time
	Average WFE CPU
	SQL Server CPU
	# of active users supported

	1 WFE
	350
	0.01 seconds
	21.1%
	3%
	700

	2 WFE
	200
	0.01 seconds
	7%
	2%
	1400

	3 WFE
	111
	0.01 seconds
	12%
	2%
	2100

	4 WFE
	180
	0.01 seconds
	8%
	3%
	2857

	5 WFE
	225
	0.01 seconds
	5%
	3.5%
	3571

PowerPoint Web App editing
When editing PowerPoint files in the Web App, both a web front end and application server are required. However, the high majority of the load is on the application server which is memory bound.

	Topology
	RPS
	Average Response Time
	Average WFE CPU
	Average App Server CPU
	App Server Memory Usage
	SQL Server CPU
	# of active users supported

	1x1
	48
	1.18
	2.8%
	40%
	87.5%
	0.6%
	600

	1x2
	125
	1.19
	4.76%
	37%
	87.5%
	1.3%
	1200

	1x3
	142
	1.28
	6.58%
	34.6%
	87.5%
	1.3%
	1800

PowerPoint Broadcast (default, “MaxPendingReceives=1”)
When viewing PowerPoint Broadcasts in the Web App, both a web front end and application server are required. Each attendee pings the server every second to determine the broadcast’s state, so RPS is roughly indicative of the number of active users supported.
By default, the web front ends are bottlenecked by the “MaxPendingReceives” setting on the application server. Data is shown for both the default “MaxPendingReceives” setting of 1 and a “tuned” setting of 10. PowerPoint Broadcast usage of web front ends may be throttled if CPU usage is a concern. For more information about performance tuning a server farm for PowerPoint Broadcast, see Configure Broadcast Slide Show performance.

	Topology
	RPS
	Average Response Time
	Average WFE CPU
	Average App Server CPU
	SQL Server CPU
	# of active users supported

	1x1
	295
	0.36
	20.7%
	37.3%
	3.7%
	300

	1x2
	590
	0.32
	30.5%
	23.5%
	1.7%
	600

	2x2
	671
	0.83
	18.1%
	38.45%
	2%
	700

	2x3
	797
	0.47
	26.5%
	26.5%
	2%
	800

	3x3
	842
	0.87
	19%
	34%
	3%
	850

PowerPoint Broadcast ("MaxPendingReceives=10")
With the “MaxPendingReceives” setting set to 10 in the web.config file (see the guide linked to above for details on how to change this setting), you can see the throughput and supported # of users increases greatly for a given topology. You’ll also see that this places a much heavier load on the CPU of the front-end Web server, which is the tradeoff for the extra throughput.

	Topology
	RPS
	Average Response Time
	Average WFE CPU
	Average App Server CPU
	SQL Server CPU
	# of active users supported

	1x1
	1070
	0.16
	95%
	37.5%
	1%
	1000

	1x2
	1024
	0.17
	95%
	12%
	1%
	1000

	2x2
	1934
	0.16
	48%
	39.5%
	1.5%
	2000

	2x3
	1823
	0.15
	35%
	20%
	1.6%
	2000

	3x3
	2779
	0.12
	41.5%
	33%
	2.2%
	2800

Recommendations
This section provides general performance and capacity recommendations. Use these recommendations to determine the capacity and performance characteristics of the starting topology that you created and to decide whether you have to scale out or scale up the starting topology.
Hardware recommendations
For specific information about minimum and recommended system requirements for both front-end Web server and application servers, see Hardware and Software Requirements (SharePoint Server 2010).
Determining what an optimal deployment should look like depends heavily on expected user count, how heavy the usage is expected to be, and the type of usage. As a starting point for your own deployments, consider the following guidelines:
	Application servers and front-end Web servers

	Processor(s)
	2 quad core @2.33 GHz

	RAM
	16 GB

	Operating system
	Windows Server 2008, 64 bit

	Size of the SharePoint drive
	3x146GB 15K SAS (3 RAID 1 Disks)
Disk 1: operating system
Disk 2: Swap and BLOB Cache
Disk 3: Logs and Temp directory

	Number of NICs
	2

	NIC Speed
	1 GBt

	Authentication
	NTLM

	Load balancer type
	Hardware load balancing

	Average number of daily unique visitors
	Average concurrent users
	Recommended topology

	100
	10
	1 front-end Web server, 1 application server

	1000
	30
	2 front-end Web servers, 2 application servers

	10000
	300
	4 front-end Web servers, 3 application servers

Note that for heavy usage of the PowerPoint Broadcast feature, a separate server farm is recommended (as detailed in Configure Broadcast Slide Show performance).
To see a specific example of a departmental deployment and its results, see the SharePoint 2010 Capacity Planning Case Study: Departmental Collaboration.
Scaled-up and scaled-out topologies
To increase the capacity and performance of one of the starting-point topologies, you can do one of two things. You can either scale up by increasing the capacity of your existing server computers or scale out by adding additional servers to the topology. This section describes the considerations to keep in mind between scaling up and scaling out when it comes to adding capacity for the Office Web Apps.
· The efficiency of the application server drops significantly once more then 8 CPU cores are made available. The use of global locks prevents the addition of extra cores from being used effectively – scaling out is most effective once this limit has been reached.
· For heavy Word Web App viewing use cases, the application server is CPU bound. Adding more cores (subject to the limit mentioned above) or more machines is the best way to add capacity.
· For heavy Word Web App editing use cases and heavy OneNote Web App editing or viewing use cases, the front-end Web servers are CPU bound. To scale up, add CPU capacity to front-end Web servers. Note that with enough CPU capacity, eventually heavy editing usage will result in the front-end Web servers becoming memory bound. In this case, scaling out will result in the best performance gains.
· For heavy PowerPoint Web App viewing use cases, the application server will be CPU bound, while the front-end Web servers will be memory bound.
· For heavy PowerPoint Web App editing use cases, the application server will be memory bound.
· For heavy PowerPoint Broadcast use cases, the front-end Web servers will be CPU bound.
In general, the Web Apps are designed such that scaling out results in a more robust, fail safe environment then scaling up does. While deployments on small numbers of big iron machines will work well, it is recommended to go with a scaled out deployment topology with multiple application servers and web front ends as necessary to handle the expected load.
When scaling out, the optimum ratio of application servers to front-end Web servers will vary based on the number of requests for pre-rendered cached documents, with the guidance that it should never be more than 1 front-end Web server to 4 application servers, the ratio determined in our lab as optimum when all document requests resulted in a new render. Also note that when scaling out, it is recommended that affinity be enabled between clients and front ends, as this will ensure optimum performance, particularly with the PowerPoint Web App.
[bookmark: bottlenecks][bookmark:]Common bottlenecks and their causes
During performance testing, several different common bottlenecks were revealed. A bottleneck is a condition in which the capacity of a particular constituent of a farm is reached. This causes a plateau or decrease in farm throughput.
The following table lists some common bottlenecks and describes their causes and possible resolutions.
Troubleshooting performance and scalability
	Bottleneck
	Cause
	Resolution

	Application server CPU utilization
	When an application server is overloaded with requests, average CPU utilization will approach 100 percent. This prevents the application servers from responding to requests quickly and can cause timeouts and error messages on client computers.
	Application servers can have up to 8 cores available to them, beyond which additional application servers should be made available. It is recommended that documents should rarely if ever be entering the queue during peak usage, and as a best practice peak CPU usage should be kept below 70 percent.

	Web server CPU utilization
	When a Web server is overloaded with user requests, average CPU utilization will approach 100 percent. This prevents the Web server from responding to requests quickly and can cause timeouts and error messages on client computers.
	This issue can be resolved in one of two ways. You can add additional Web servers to the farm to distribute user load, or you can scale up the Web server or servers by adding higher-speed processors.

Performance monitoring
To help you determine when you have to scale up or scale out your system, use performance counters to monitor the health of your system. Use the information in the following tables to determine which performance counters to monitor, and to which process the performance counters should be applied.
Web servers
The following table shows performance counters and processes to monitor for Web servers in your farm.
	Performance counter
	Apply to object
	Notes

	Processor time
	Total
	Shows the percentage of elapsed time that this thread used the processor to execute instructions.

	Memory utilization
	Application pool
	Shows the average utilization of system memory for the application pool. You must identify the correct application pool to monitor.
The basic guideline is to identify peak memory utilization for a given Web application, and assign that number plus 10 to the associated application pool.

	Conversion Queued Requests
	Application servers
	Shows the number of rendering requests that have been queued until the Application server is able to service the request.
This should be steady at 0 – consistently having requests in the queue indicates that the application servers are not able to keep up with the request load, meaning delayed responses for users.
To address this, either add more application servers, and/or consider increasing the maximum number of Web App viewing worker processes. This will allow the farm to service more requests per application server, but may result in increased CPU usage on the application server. You can increase the maximum number of Web App viewing worker processes to equal the number of CPU cores available on the application server, to a maximum of 8 (additional cores may not result in additional throughput gains).

	Conversion Request Frontend Cache Misses
	Front-end Web servers
	Shows the number of viewing requests that are not serviced by the web front end’s cache.
This should be relatively low – consistently having cache misses causes more requests on the SQL Server store. This might be remedied by implementing front end affinity or increasing the size of the frontend cache. This cache is 75 MB by default, while a cache size of 2 GB is recommended if the web front ends have spare memory.

	Conversion Request Average Download Time & Edit Average Download Time
	[bookmark: _GoBack]Application servers & SQL Server store
	Shows the length of time to download documents to the application server from the SQL Server store before they are rendered by the Web App.
This should be relatively low – long download times will block the user from viewing the document they are trying to access. This might be caused by availability problems on the application server or the SQL Server store.

	OneNote Editor Page Load & Word Editor Page Load
	Front-end Web servers
	For front-end Web servers that service Word and OneNote editing requests, this shows the amount of time necessary to load the page. Large spikes indicate not enough front-end Web servers to handle the load.

	Broadcast GetData Rate
	Front-end Web servers
	Shows a rough indication of the number of users viewing PowerPoint Broadcasts.
A high rate of BroadcastGetData requests indicates that a large number of users are viewing PowerPoint Broadcasts. This means PowerPoint Broadcast viewers may be using more frontend CPU time than desired. This may have an effect on overall server performance if total CPU usage is high.

image2.png
Application Servers

Y

Server Switch
Web Front End SQL Store

image3.emf
Server Switch

SQL Store Web Front End

oleObject1.bin
�

�

Web Front End

image1.png
ﬁ SharePoint

