[image: image4.png]4% Windows

Debugging Printer Drivers - 3

Debugging Printer Drivers
January 30, 2007
Abstract

This paper provides information about debugging user-mode printer drivers developed for Windows Vista™. This paper also applies to Microsoft® Windows® XP and Microsoft Windows Server® 2003. It provides guidelines for printer driver developers and testers to obtain more detailed information about a printer driver when it halts in a debugger.

This information applies for the following operating systems:

Microsoft Windows XP

Microsoft Windows Server 2003

Windows Vista
Note that this paper applies only to user-mode printer drivers.

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/device/print/DbgPrtDrvr.mspx
Contents

4Introduction

4Getting Started

4Configure the Debugger for Debugging Print Drivers

4Install the Debugging Software

4Configure a Remote Console for Debugging

5Starting the Spooler in the Debugger

5Using Debugger Commands

6Configure Symbols for Debugging

6Define the Symbol File Path

6List the Modules and Symbol files

7Check Symbol Quality

8Troubleshoot Bad or Missing Symbols

13Configure AppVerifier to Test the Print Spooler

13Configure AppVerifier

13Configure the additional debugging features of the print spooler

14Run the Test Software

14Examining a Sample Break

16Common Program Errors

16Null Pointer reference

17Buffer Overruns

18Using Freed Memory

19Uninitialized Variables

19Race Conditions

19Debugging Common Program Errors

19Debugging Null Pointer Errors

19Data Collection

20Analysis

20Conclusion

21Next Steps

21Debugging Buffer Overruns

21Data Collection

21Analysis

22Conclusion

22Next Steps

23Heap Memory Corruption

23Data Collection

23Analysis

24Conclusion

24Next Steps

24Memory Access “Race” Conditions

25Data Collection

25Analysis

27Conclusion

27Next Steps

27Uninitialized Variables

27Resolving the Problem

27Glossary

30Understanding the Assembly Language Display

30The debugger register display

31Memory move instructions

32References

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows XP, Windows 2000 and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

This paper provides software developers and testers with information about debugging user-mode printer drivers for the Microsoft® Windows® family of operating systems. The methods described in this paper apply to user-mode printer drivers running on Windows Vista. Some methods might also apply to user-mode printer drivers developed for earlier versions of Microsoft Windows; however the tools that are available for Windows Vista might not work when run on previous versions of Microsoft Windows.
This paper assumes that you are already familiar with printer driver design and the basic principles of debugger operation and debugging using the source-level and kernel debuggers that are used by developers and testers to locate programming errors. Links to additional information about printer driver design and debugging are listed in the References section at the end of this paper.
The examples in this paper are taken from Intel x86 computers. The techniques that are described in this paper can also be used to debug printer drivers on 64-bit computers; however the output from the debugger commands will not be the same as the examples.

Getting Started
This section describes how to configure the debugging tools to debug user-mode printer drivers on computers that are running Microsoft Windows Vista.
Configure the Debugger for Debugging Print Drivers

You can use any user-mode debugger to debug user-mode printer drivers; however the Microsoft debuggers that support the commands and features that are used in this paper are preferred. NTSD is the debugger that is used in this paper's examples; however CDB and WinDBG can also be used to debug user-mode printer drivers.
Note:

The Visual Studio debugging environment does not support the all of the commands that are described in this paper.

Install the Debugging Software

Download and install Debugging Tools for Windows. The Using Debugging Tools for Windows help file is installed with Debugging Tools for Windows and describes how to install and configure a debugging session. Using Debugging Tools for Windows also contains the complete description of the debugging commands that are used in this paper.

Configure a Remote Console for Debugging
Running the debugger from within a remote console window allows others to connect to your debugging session and interact with it from remote computers. This is not required to use the debugger, but it can make it easier to work with another person to debug a problem.
Note:

Using a remote console provides very little security and so it should only be used in an environment where this will not present a problem.

To start the debugger in a remote console session from the command line, enter a command similar to the following from the computer that you will be testing.

remote /s "ntsd.exe" DebugSessionName

You can include optional arguments to the NTSD command within the quotation marks. Using Debugging Tools for Windows contains detailed instructions for setting up and accessing a remote console debugging session.

Starting the Spooler in the Debugger

There are several ways to run the spooler in the debugger in order to troubleshoot printer drivers.
Attach the Debugger While the Print Spooler is Running

See the "Attaching to a Running Process (User Mode)" topic in debugger.chm from Debugging Tools for Windows for information on how to attach the debugger to the print spooler after the system has started and after the print spooler service has started. Depending on how the system is configured this might not be possible when running on Windows Vista. If this is not possible, try one of the other procedures in this section.

Use the Global Flags to Start the Print Spooler in the Debugger

To use the Global Flags tool (gflags.exe) that is part of the Debugging Tools for Windows to configure the print spooler to start in the debugger:

Start gflags.exe

In Global Flags, select the Image tab

In the Image edit box, type spoolsv.exe (the print spooler executable image file) and press the Tab key to refresh the property page.
Check Debugger and in the edit box, enter the debugger command shown here:
<debugging tools for windows>\ntsd.exe -G -g
Note that you should use the ntsd.exe that was installed with the Debugging Tools for Windows. The -G and -g options tell the debugger to not stop when the image is loaded or when the image terminates. These options allow the print spooler service to start and stop normally while presenting the debugger command window for debugging.

Click Apply and restart the system. The system will restart with the print spooler running in the debugger.

For debugging XPSDrv printer drivers, after the system restarts and spoolsv.exe is running in the debugger, you might also need to attach the debugger to the printfilterpipelinesvc.exe process. See the "Attaching to a Running Process (User Mode)" topic in debugger.chm from Debugging Tools for Windows for information on how to attach the debugger to this process. Remember that this process may not always be running.

Using Debugger Commands
Many of the troubleshooting examples in this paper assume the print driver has already encountered a problem and broken into the debugger with the debugger waiting with a command prompt. In a user-mode debugging session, the debugger command prompt looks something like 0:002> where the 0 to the left of the colon indicates the processor while the 002 indicates the thread. The thread value is an index value and is not the same as the thread ID that is used by the operating system.

Some debugger commands might not perform as shown in the examples if the debugger has not stopped at the debugger’s command prompt.

Configure Symbols for Debugging
After installing and configuring the debugging software, you will need to define the directory or network paths to the correct symbol files. Use symchk.exe before you start debugging to ensure that the symbol files in these paths match the executable files that you will debug.
Define the Symbol File Path

You can use the _NT_SYMBOL_PATH environment variable to define the symbol search path for your debugging session. If you set this variable to the correct path before you start debugging, you will not need to define it in the debugger.

Define the variable from the command prompt by using the set command as shown in the following example:

set _NT_SYMBOL_PATH = \\somelocalserver\someshare;srv*c:\websymbols*http://msdl.microsoft.com/download/symbols.

The symbol path shown in the example, \\somelocalserver\someshare, is fictitious. Replace this with the first location that the debugger should look to find the symbols that correspond to the image. If the correct symbol file is not found in that location, the symbols for the Microsoft components will be downloaded from the Microsoft download site defined next and cached in the c:\websymbols directory for faster access. Microsoft supports http://msdl.microsoft.com/download/symbols for symbolic debugging.

List the Modules and Symbol files

Even if you correctly define the locations of the symbol files before you start debugging, it is still a good practice to confirm that those locations have the correct files before you continue debugging.
To confirm the debugger is using the correct symbols after a test has halted in the debugger and before you begin debugging, execute the lm (List Modules) command in the debugger. The lm command lists the program modules that are associated with the current executable file and the symbol file the debugger has associated with each module. Figure 1 shows a module listing from a debugging session.

[image: image1.jpg]nodule name
01000080 01013000 notepad (private pdb synbols)
\windous xp\rtm\2680\FreNallNxB6£ e .sropriretailsexe\notepad. pdb
50470800 5adad600 uxthene (deferred)
SHLAPT Cdeferred)
COMCTL32 Cdeferred>
WINSPOOL Sprivate pdp synbols) Eiscumswincpool.pdh

re sro\privreta: cond 1932 pdb
private pdb synbols) E:\cyn~UNIDRUUI.pdh
(deferred>

D13z (deferred>
USER32 (private pdh synbols) ess————
innt\IPASP2\49433\2600NF ree s ym\x86\MSOn 1y . 036989-1801 \priNspi s ynbo ls\d L1\use]

ADUAPI3Z (deferred>
kernel32 (private pdb synbols) Ei\sym\kernel32.pdh
ntdll private pdb symbols) —EEEEEE—

innt\UXPASP2\ 44054726 BBNF ree\syn\ 1386 \NSOn Ly . 838562 11 44\prinepLre ymbo Lond Linnt]

RPCRT4 Cdeferred>

Figure 1. lm Debugger Command Output
The possible symbol types are listed below, with the most desirable first:

Private pdb symbols
Private pdb symbols are the most detailed and therefore the best symbols to use for debugging. Private pdb symbols include internal and exported function names, data types, and global variables.
Export symbols
Export symbols are not as detailed as private pdb symbols. Often, they only contain the exported function names. These symbols are rarely detailed enough to troubleshoot a problem.
Deferred
Deferred indicates that the debugger has not loaded symbols for that module. By default, the debugger only loads symbols as they are needed. If you need to reference symbols that the debugger has not loaded, you can load them manually by using the LD command at the command prompt in the debugger.
Check Symbol Quality

You can double-check the integrity of the symbols by producing a stack trace with the k (stack trace) command in the debugger. Because symbol files and executable files can fall out of sync, especially in a development environment, it is a good practice to use this test to confirm you are using the symbols while debugging.
Figure 2 shows an example of a stack trace listing. If you debug with symbol files that are missing or out-of-date, then the symbol names that are displayed, if any names are shown, can be misleading.

The stack trace listing displays the functions in the current call stack, with the most recently called function at the top. Each entry in the list has the following format:
ChildEBP
RetAddr
MODULE!SYMBOL+0x0ffset

Where:

ChildEBP is the 32-bit Base Pointer for that function or subroutine

RetAddr is the 32-bit virtual address the function will return to when it exits
MODULE is the name of the executable module containing the function
SYMBOL is the name of the function called
Offset is the offset, in bytes, from the address of the function to the current instruction being executed and is displayed as a hex number
Good symbols

Private pdb symbols usually include public and private function names and data types. When the debugger has loaded the correct symbol file for the module, the value of the offset that that shown next to each symbol name in the stack trace listing is usually relatively small. Figure 2 shows a sample stack trace listing with some of the offset values circled.
[image: image2.jpg]RetAddr
73006000
23006074
763habaf
763d12d4
763d1edl
01005989
01006778
01006725
01002c29
01003630
22467017
?2d6cdce
72444594
724447b4
22£7589¢
772482798
01006c54
77e76h69
©00p0B060

otPrinterDCyiaDialogfix2e

USER32!NtUserTrans lateAcce Leratox +lxe
notepad?liinMainCRIS tartup+Oxi 74
kerne1321BaseProcessStart +0x23

Figure 2. Stack Trace in a Debugging Session With Good Symbols

Bad or missing symbols

If the stack trace listing contains error messages or if the offset values listed are large, the debugger probably does not have the correct symbols. Figure 3 shows an example of a debugging session that does not have the correct symbols loaded.

[image: image3.jpg]ERROR: Synbol file could net
TNDOUS\S ys ten32\UINSPOOL . DRU —

ERROR: Synbol file could not be found.

Defaulted to export synbols for Exwi|
INDOUS\s ysten32\cond1g3z .d11 —

Figure 3. Stack Trace in a Debugging Session With Bad Symbols
If you see a stack listing similar to the listing in Figure 3, you should troubleshoot the problem with the symbols before continuing to debug the application.

Troubleshoot Bad or Missing Symbols
This section describes how to identify and correct the more common reasons that the debugger might be using incorrect symbols. See also the Symbols section of Using Debugging Tools for Windows for more information on using and configuring symbols in the debugger.

Verify the symbol path
Enter the .sympath command in the debugger to list the directory paths that the debugger is currently using to locate symbol files. Make sure that the paths listed by sympath include the correct path to the symbol files of the modules that you are debugging.
Verify the module version and path
Use the v and m options of the lm debugger command to display detailed information about a specific module. The following example contains the output of lm command. The critical information for troubleshooting is shown in bold text.
0:001> lm v m MyDriver

start end module name

74300000 74315000 MyDriver

 Image path: E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MyDriver.dll
 Timestamp: Fri Apr 23 21:42:28 2004 (4089F034) Checksum: 00012DE2

 ImageSize : 00015000

 File version: 5.1.2600.2120

 Product version: 5.1.2600.2120

 File flags: 0 (Mask 3F)

 File OS: 40004 NT Win32

 File type: 2.0 Dll

 File date: 00000000.00000000

 Translations: 0409.04b0

 CompanyName: Fictitious Corporation

 ProductName: MyHardware Device
 InternalName: MyDriver.dll

 OriginalFilename: MyDriver.dll

 ProductVersion: 5.1.2600.2120

 FileVersion: 5.1.2600.2120 (xpsp.040423-1852)

 FileDescription: Some DLL Info

 LegalCopyright: Fictitious Corporation. All rights reserved.

The output of the lm command in the previous example lists details of the main driver module. Review the Image Path entry to ensure that the module that was loaded by the debugger is the correct version and in the correct directory.
If you need to add a path, you can use the .sympath command to specify a path that contains the symbol file for a module. For example, if you are debugging files provided by Microsoft, you can get public symbol files from Microsoft over the web by entering the following commands in the debugger.
0:001>.sympath+ SRV*c:\websymbols*http://msdl.microsoft.com/download/symbols

0:001>.reload
In the above example, the .sympath command modifies the symbol path to include the web address of Microsoft’s public symbols. Adding the plus character to the command will append the specified paths to the current path rather than replace the current path with the one specified in the command. Enter the .reload command in the debugger console to reload the symbols using the updated path.

Validate the symbol files
You can also validate the symbol files for an executable image outside of a debugger by using the symchk command from the command line. Symchk verifies that the symbol files match the corresponding executable files as shown in the following example.
e:\debuggers> symchk /v f:\myapp.exe /s f:\symbols\newdirectory

SYMCHK: MyApp.exe PASSED

SYMCHK: FAILED files = 0

SYMCHK: PASSED + IGNORED files = 1

The preceding example shows the output of symchk when the symbol file that corresponds to the specified executable file is found and is valid. The following example shows the output of symchk when it cannot find a symbol file or if a symbol file is not valid.
e:\debuggers> symchk /r c:\windows\system32 /s srv*\\manysymbols\windows

SYMCHK: msisam11.dll FAILED - MSISAM11.pdb is missing

SYMCHK: msuni11.dll FAILED - msuni11link.pdb is missing

SYMCHK: msdxm.ocx FAILED - Image is split correctly, but msdxm.dbg is

 missing

SYMCHK: expsrv.dll FAILED - Checksum doesn't match with expsrv.DBG

SYMCHK: imeshare.dll FAILED - imeshare.opt.pdb is missing

SYMCHK: ir32_32.dll FAILED - Built with no debugging information

SYMCHK: author.dll FAILED - rpctest.pdb is missing

SYMCHK: msvcrt40.dll FAILED - Built with no debugging information

......

SYMCHK: FAILED files = 211

SYMCHK: PASSED + IGNORED files = 4809

The following example shows how symchk can show the subdirectory that contains the correct symbol file.
E:\>symchk E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL /s c:\websymbols /ob /od /oe /oi /os

SYMCHK: E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL PASSED - PDB: c:\websymbols\MyDevUi.pdb\3B0218FD1\MyDevUi.pdb DBG: <N/A>

SYMCHK: FAILED files = 0

SYMCHK: PASSED + IGNORED files = 1

Adding the /v switch enables verbose output which produces the following output.
E:\>symchk E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL /s c:\websymbols /ob /od /oe /oi /os /v

[SYMCHK] InputOptions : 0x00000001

[SYMCHK] InputPID : 0

[SYMCHK] InputFilename : E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL

[SYMCHK] InputFileMask : MYDEVUI.DLL

[SYMCHK] OutputOptions : 0x0000007f

[SYMCHK] OutputCSVFile :

[SYMCHK] CheckingAttributes: 0x40000045

[SYMCHK] Searching for symbols to E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\HPF

UI50.DLL in path c:\websymbols

[SYMCHK] Using search path "c:\websymbols"

DBGHELP: No header for E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL.

Searching for image on disk

DBGHELP: E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL - OK

DBGHELP: MYDEVUI - public symbols

 c:\websymbols\MyDevUi.pdb\3B0218FD1\MyDevUi.pdb

[SYMCHK] MODULE64 Info ----------------------

[SYMCHK] Struct size: 1672 bytes

[SYMCHK] Base: 0x68200000

[SYMCHK] Image size: 45056 bytes

[SYMCHK] Date: 0x3b7dfe83

[SYMCHK] Checksum: 0x00013663

[SYMCHK] NumSyms: 0

[SYMCHK] SymType: SymPDB

[SYMCHK] ModName: MYDEVUI
[SYMCHK] ImageName: E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL

[SYMCHK] LoadedImage: E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL

[SYMCHK] PDB: "c:\websymbols\MyDevUi.pdb\3B0218FD1\MyDevUi.pdb"

[SYMCHK] CV: NB10

[SYMCHK] CV DWORD: 0x3031424e

[SYMCHK] CV Data: MyDevUi.pdb

[SYMCHK] PDB Sig: 3b0218fd

[SYMCHK] PDB7 Sig: {00000000-0000-0000-0000-000000000000}

[SYMCHK] Age: 1

[SYMCHK] PDB Matched: TRUE

[SYMCHK] DBG Matched: TRUE

[SYMCHK] Line nubmers: FALSE

[SYMCHK] Global syms: FALSE

[SYMCHK] Type Info: FALSE

[SYMCHK] ------------------------------------

SymbolCheckVersion 0x00000001

Result 0x00030001

DbgFilename

DbgTimeDateStamp 0x3b7dfe83

DbgSizeOfImage 0x0000b000

DbgChecksum 0x00013663

PdbFilename c:\websymbols\MyDevUi.pdb\3B0218FD1\MyDevUi.pdb

PdbSignature 0x3b0218fd

PdbDbiAge 0x00000001

[SYMCHK] [0x00000000 - 0x00030001] Checked "E:\WINDOWS\System32\spool\DRIVERS\

W32X86\3\MYDEVUI.DLL"

SYMCHK: E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL PASSED - PDB: c:\websymbols\MyDevUi.pdb\3B0218FD1\MyDevUi.pdb DBG: <N/A>

SYMCHK: FAILED files = 0

SYMCHK: PASSED + IGNORED files = 1

The previous example used the /ob /od /oe /oi /os switches to perform the following functions:
/ob – displays the full path for binaries in all output messages which helps identify problems that might be caused by using the wrong executable file.

/od – displays full detail in the output. Same as /oe /op /oi.
/oe – displays include individual errors. This option is only useful if /q is used, because individual errors are automatically displayed if quiet mode hasn't been activated.
/oi – displays each file that was ignored. By default, SymChk only displays files that fail testing.

/os – display he full path for symbols in all output messages. This helps identify problems caused by using the wrong symbol file.
/v – verbose output

In this example, the symbol file that corresponds to the specified executable file is c:\websymbols\MyDevUi.pdb\3B0218FD1\MyDevUi.pdb. See Using Debugging Tools for Windows for more information about using symchk.
Resolve symbol file problems
You must resolve any symbol file problems before you continue debugging. In the following example, the program stopped in the debugger and the debugger displayed an error. The k command was then executed to produce a stack trace listing.
0:000> k 3

ChildEBP RetAddr

WARNING: Stack unwind information not available. Following frames might be wrong.

0006d96c 6820148f MyDevUi!DllGetClassObject+0x1530
0006d9c8 768692db MyDevUi!DllGetClassObject+0xff

0006d9e0 76869312 UNIDRVUI!DrvUpgradePrinter+0x1bd08
The large symbolic offsets that are shown in bold, in addition to the warning message, indicate that there is a problem with the symbol files. To confirm this, the lm command is executed in the debugger to display a module summary listing.

0:000> lm m MyDevUi
start end module name

68200000 6820b000 MyDevUi (export symbols) E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MyDevUi.dll

The output of the lm command shows that only export symbols were found for the MyDevUi module. Export symbols contain very little detail so private pdb symbols should be located and loaded before continuing to debug this problem.

To find the symbol file with the private pdb symbols, you can execute the symchk command outside the debugger in a separate command window. The following example uses the symchk command to determine if the correct symbol file can be found in a subdirectory of the c:\websymbols directory where the debugger caches symbol files.
E:\>symchk E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL /s c:\websymbols /ob /od /oe /oi /os

SYMCHK: E:\WINDOWS\System32\spool\DRIVERS\W32X86\3\MYDEVUI.DLL PASSED - PDB: c:\websymbols\MyDevUi.pdb\3B0218FD1\MyDevUi.pdb DBG: <N/A>

SYMCHK: FAILED files = 0

SYMCHK: PASSED + IGNORED files = 1

In this example, symchk confirms that the correct symbol file is in a subdirectory of the c:\websymbols directory. You can now execute the .sympath command in the debugger to specify the correct symbol file directory found by the symchk command. Next, execute the .reload command to load the symbol files from the new path as shown in the following example.
0:000> .sympath c:\websymbols

Symbol search path is: c:\websymbols

0:000> .reload

Reloading current modules

If no errors are returned by the previous commands, execute the k command to display a stack trace listing with the symbols from the symbol files in the new path.

0:000> k

ChildEBP RetAddr

0006d96c 6820148f MyDevUi!IOEMUIClassFactory::QueryInterface+0x3
0006d9c8 768692db MyDevUi!DllGetClassObject+0xff

0006d9e0 76869312 UNIDRVUI!HDriver_CoGetClassObject+0x2c

0006da0c 7686938e UNIDRVUI!HDriver_CoCreateInstance+0x2e

0006da3c 7684ee46 UNIDRVUI!BQILatestOemInterface+0x26

0006da58 768691d6 UNIDRVUI!BGetOemInterface+0x1f

0006da7c 768494b0 UNIDRVUI!BLoadOEMPluginModules+0x4f

0006da94 76849884 UNIDRVUI!PLoadCommonInfo+0x17e

0006dab8 7684bfc8 UNIDRVUI!PFillUiData+0x14

0006dee8 6e68fb44 UNIDRVUI!DrvDocumentPropertySheets+0x63

0006df4c 6e68ed3c compstui!CallpfnPSUI+0xdb

0006e1b4 6e68f658 compstui!InsertPSUIPage+0x1a8

0006e20c 7300954a compstui!CPSUICallBack+0xef

0006e234 6e68fb44 WINSPOOL!DocumentPropertySheets+0xe2

0006e298 6e68ed3c compstui!CallpfnPSUI+0xdb

0006e500 6e68f658 compstui!InsertPSUIPage+0x1a8

0006e558 74ba1456 compstui!CPSUICallBack+0xef

0006e584 74b8be70 printui!TDocumentProperties::bBuildPages+0x8e

0006e590 6e68fb44 printui!TPropertySheetManager::CPSUIFunc+0x5f

0006e5f4 6e68ed3c compstui!CallpfnPSUI+0xdb

The symbolic reference shown in bold and all other symbolic references now contain names that are more meaningful and have much smaller offsets. Rerun the lm command to confirm that the debugger has loaded the right symbols for the module as shown in the following example.

0:000> lm mMyDevUi
start end module name

68200000 6820b000 MyDevUi (pdb symbols) c:\websymbols\MyDevUi.pdb\3B0218FD1\MyDevUi.pdb

Noisy symbol loading

Normally the debugger loads symbol files without displaying any information in the debugger console. To confirm that the correct symbol files are loaded, as the debugger loads them, you can enable noisy symbol file loading using the !sym command as shown in the following example.

0:000> !sym noisy

noisy mode - symbol prompts off

When noisy symbol file loading is enabled, the debugger displays the full file path of each symbol file that it loads. An error message will be displayed in the debugger console if there is a problem loading the symbol file.
Configure AppVerifier to Test the Print Spooler

Application Verifier (AppVerifier) is a run-time verification and test tool that monitors programs for compatibility, stability and security issues. Print Verifier is a feature of AppVerifier that examines the print subsystem in greater detail and is described later in this paper.
For detailed debugging of printer drivers, configure AppVerifier for general application testing and also configure the additional tests of Print Verifier. See the Resources section of the paper for additional information on configuring and using AppVerifier.

Configure AppVerifier

Enter the following command in a command window to configure AppVerifier to run the Print Verifier and monitor the processes of the print subsystem:

appverif -enable heaps exceptions locks handles PrintAPI PrintDriver -for spoolsv.exe printfilterpipelinesvc.exe

After configuring AppVerifier, you might need to restart the computer for the settings to take effect. As a minimum, you must stop and restart the spooler service. Depending on the problem you are troubleshooting, you might also need to enable the additional debugging support in the print spooler service (spoolsv.exe).
Configure the additional debugging features of the print spooler

The print spooler in Windows Vista includes additional debugging features that you can enable by configuring the system registry. These features are described in Testing and Troubleshooting the Print Subsystem. Use the regedit scripts described below to simplify configuring the registry.
Warning:
Use extreme caution when modifying the registry directly. Modifying some areas of the system registry can cause serious problems with the operating system. Make sure that you back up the registry and know how to restore it before you make any edits.

Enable Enhanced Debugging in the Print Spooler

Save the following text as a text file and load it into the registry by using regedit.exe.
REGEDIT4

;;

;;
Regedit script to enable enhanced spooler debugging

;;

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHEnabled]

@="Enable Print Verifier Log Files"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHDbgBreakOnFatalVEHCode]

@="Enable Print Verifier Debug Break"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHReportFaultOnFatalVEHCode]

@="Enable Print Verifier Debug Break Reporting"

To use Notepad, copy the text into an empty Notepad document and make sure that the first line in the Notepad document is the line that contains REGEDIT4. In the File menu, select Save As… and save the document using the Save As dialog box by selecting All Files in the Save as type combo box and enter EnablePrintVEH.reg in the File name box. The .reg file extension is required to associate this file with regedit.exe. In the Windows explorer, run EnablePrintVEH.reg to add the values to the registry and configure the spooler for AppVerifier troubleshooting.

Disable Enhanced Debugging in the Print Spooler

Save the following text as a text file and use it to clear the registry entries by using the Regedit tool.
REGEDIT4

;;

;;
Regedit script to disable enhanced spooler debugging

;;

[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHEnabled]

[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHDbgBreakOnFatalVEHCode]

[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHReportFaultOnFatalVEHCode]
To use Notepad, copy the text into an empty Notepad document and make sure that the first line in the Notepad document is the line that contains REGEDIT4. In the File menu, select Save As… and save the document using the Save As dialog box by selecting All Files in the Save as type combo box and enter DisablePrintVEH.reg in the File name box. The .reg file extension is required to associate this file with regedit.exe. In the Windows explorer, run DisablePrintVEH.reg to remove the values from the registry and return the spooler to normal operation.

Run the Test Software

After you have configured the software, run the test or print the document that tests the new configuration or is causing the error. When AppVerifier detects an error, it breaks into the debugger and displays a stop code with a message that indicates the nature of problem.

Examining a Sample Break
If a program has stopped in the debugger, you should first determine if AppVerifier caused the program to stop in the debugger before you debug the program. Before continuing, check the following conditions to make sure that you are investigating a problem in the print subsystem that was detected by AppVerifier.

· Has the program stopped at a user-mode breakpoint?
The debugger console screen should display a command prompt if the program has stopped in the debugger. The command prompt should look something like:
0:000>
The actual numbers that precede the greater-than sign might be different because they indicate the process thread ID that is being debugged. If the command prompt looks something like:
0:kd>
then the break is from the kernel debugger and the problem is outside of the scope of this document.

· Was AppVerifier configured to test for heap errors in Spoolsv.exe?
Make sure that AppVerifier has the Heaps test enabled under the Basics test category in the Tests window of AppVerifier for the spoolsv.exe application.

· Were all other programs under test configured test for heap errors?
Make sure that, at a minimum, the Heaps test enabled under the Basics test category in the Tests window of AppVerifier for all applications that are being tested. You can also enable the Exceptions, Locks, Handles, PrintDriver, and PrintAPI tests. When testing XPSDrv printer drivers, printfilterpipelinesvc.exe should be included in the Applications list.

· Was there an AppVerifier message in the debugger?
AppVerifier writes information to the debugger console after it detects an error but before it stops the program in the debugger. If no AppVerifier information is displayed in the debugger, there is still a problem to investigate; it just is not a problem that was found by AppVerifier.
The following example shows an AppVerifier stop. The content of this message is determined by the nature of the problem detected by AppVerifier. AppVerifier help contains more detailed information about the Verifier Stop codes.

===
VERIFIER STOP 0000060F: pid 0xA20: unexpected exception raised while probing memory

C0000005 : Exception code.
0013E868 : Exception record. Use .exr to display it.
0013E884 : Context record. Use .cxr to display it.
134AB000 : Memory address
===
This verifier stop is continuable.
After debugging it use `go' to continue.
===

Break instruction exception - code 80000003 (first chance)
ntdll!DbgBreakPoint:
77eaf2bc cc int 3

If these conditions were met then the program was stopped by AppVerifier and you should perform the following preparations before actually debugging into the program code. These steps are described in greater detail in the “Collecting Data from Print Verifier Stops” section of Testing and Troubleshooting Printer Drivers.

· Create a Dump File
Execute the .dump command in the debugger to create a minidump file.

· Create a Session Log
Execute the .logopen command in the debugger to create a log of the debugging session.

· Display the Operating System
Execute the vertarget command in the debugger to display the current version and build number of the operating system.

· Display the Current Process
Execute the | (vertical bar) command in the debugger to display the current process.

· Determine the Cause of the Break
Review the message written to the debugger console by AppVerifier.

· Enable Source Code Display
Enter the .lines command in the debugger to enable the source code display.

· Examine the Context Record
Enter the .cxr command in the debugger with the address of the context record to view the context record.

· Examine the Stack Trace
Enter the k command in the debugger to produce a stack trace listing.
Common Program Errors
This section describes some common program errors that you might encounter when debugging. Each of the program errors described in this section appear in the debugger as an access violation. To fix the problem or to accurately describe the problem to another developer, you should be able to identify the problem more precisely than as simply as an access violation or AV.

Access Violations (AVs) are especially serious program errors because of the unpredictable and potentially serious impact they can have on code security and system reliability. For a long time, some developers felt that it was permissible to allow these errors as long as they were handled by an exception handler. This wasn’t a good idea in the past and it is definitely not a good idea in Windows Vista. To support the security and reliability goals of Windows Vista, printer driver testing will enforce a zero-tolerance policy of access violations as much as possible.
This section describes the following types of access violation errors:

· Null pointer reference errors

· Buffer overrun errors

· Using a freed memory buffer

· Uninitialized variable errors
· Race condition errors

Null Pointer reference

Null pointer references are the most common form of access violations. A pointer is a data type that identifies another memory location. A null pointer is one that identifies a memory location that has the illegal virtual address of zero (0x00000000). Program instructions that try to reference a virtual address of zero generate an access violation.

In practice, the entire first page of virtual memory cannot be accessed by user-mode programs or printer drivers. The actual size of a page of virtual memory depends on the operating system and processor architecture; however, it is usually 4096 bytes or larger. Consequently, any virtual address less then 0x00001000 cannot be accessed by a user-mode program.
Because member variables and the data fields of data structures are identified as an offset from the base address of the class or structure, it is possible to have a null pointer error when the base address of the structure is zero (0x00000000) even though the actual address that fails is not zero.
A common programming technique that is use to protect against potential null pointer references is to enclose memory accesses in a try/catch or __try/__except statement block. The problem with this approach, as opposed to testing for them in the code or avoiding and preventing these problems through careful design and implementation, is that:

· Exceptions in C/C++ are very expensive in terms of runtime performance. It’s usually much faster to check for null pointers in the code than to use exception handling

· Exception handlers introduce multiple exit points for function and stack frames making the code logic hard to follow. This design can cause problems in the future, as well. For example, if an additional memory or resource allocation call is added, it might not be freed correctly if the exception handling logic is too hard to follow. Checking for a null pointer in the normal code path is much simpler and easier to follow.
· During run-time, for example, during development and beta-testing, using try/catch or __try/__except blocks can catch null-pointer exceptions but it can also catch and hide unexpected exceptions that would otherwise be visible during testing.

· During testing, debuggers break on a first-chance access violation. A first-chance exception is one that will be handled by an exception handler, if one is present. The debugger catches these exceptions by default so they can be examined during a debugging session, even if the exception handler will take care of it during normal execution. When your code handles null pointers this way, the driver is much more difficult to test because it will frequently break into the debugger.
Because of the problems this approach presents, Microsoft‘s testing environment considers all serious first-chance exceptions to be fatal.
You should not assume that your printer driver will never encounter a null pointer. The spooler process is a service that runs continuously and hosts all printer drivers. In many enterprise environments, the work load of the spooler is such that out-of-memory conditions can happen frequently. In such an environment, memory allocations will fail and null pointers will be returned by the allocation functions.
You can introduce memory allocation errors during testing by using tools that introduce random memory allocation failures.

Buffer Overruns

Memory buffers are areas of virtual memory and have a beginning and ending address. Attempting to access an address that is greater than the ending address of the buffer (overrunning the end) or less than the beginning address of the buffer (underrunning) is a programming error and frequently the source of code security problems. Overrunning a memory buffer is the more common error of the two.

Security is the primary concern with buffer overrun errors. Functions that receive memory buffers from untrusted sources must verify the integrity of those buffers and guard against buffer overruns. The best way to protect against buffer errors such as overruns is to always inspect and verify the data that comes from untrusted sources.
Some potential sources of buffer overrun errors are:

· DEVMODEs that come from untrusted users.

· escapes coming from an untrusted user.

· window messages in the driver user interface module coming from any process in the same logon session.

· Corrupted images, fonts, and image formats that might come from an external source.
To protect against unsafe string buffers and from string buffer overruns that can cause problems in string functions, programs should link against StrSafe.lib and use only string functions that are defined in StrSafe.h

Using Freed Memory

A memory heap is an area of virtual memory from which a program allocates memory buffers in which to store program data temporarily. Sometimes a program will free a memory buffer and then try to access that buffer later. Trying to read from a freed memory buffer can return invalid data in the best case and, in the worst case, cause an access violation. Writing to a freed memory block is far more serious. If the write attempt does not cause an access violation, it can corrupt the contents of memory buffers allocated for use by other parts of the program or corrupt the internal structures of the memory heap itself.

In normal program usage, improper memory access attempts of this type might not always produce an access violation. Using a try/catch or __try/__except statement block to try to catch memory-access errors has the same performance and code-flow issues as it does when you try to trap null pointers or other access violations.

Race-condition problems can also occur with this type of improper memory access in multi-threaded programs. For example, if one thread frees a memory buffer and another thread allocates a memory buffer, the new memory buffer might use some or all of the same virtual memory as the memory buffer that was just freed. If the first thread continues to use the memory in the buffer that it just freed, it can corrupt the memory that is now being used by the second thread. This problem is difficult to troubleshoot because finding it depends on the timing and the sequencing of the memory free and memory allocation calls. Using AppVerifier and enabling the heap tests makes it easier to identify and debug this type of error.

A program should never access a resource after it has been freed and, because these errors are difficult to locate, it is better if you can catch these errors during the design and coding phase.
You should also make sure that a resource is not freed more than once. Freeing a resource such as a handle or a memory buffer more than once can cause valid memory buffers that are being used in other threads to become unavailable unexpectedly.

Using the IsBadReadPtr or IsBadWritePtr functions in a multithreaded, user-mode driver does not prevent other threads from invalidating the resource before the function returns. You should avoid using these functions in user-mode printer drivers because they have the potential to causing exceptions during normal program execution and produce unnecessary debugger breaks.

The unpredictable nature of this type of error and the difficulty to reproduce them makes it essential that you test your program or driver with the heap tests enabled in AppVerifier. The heap tests will force this type of improper access to generate an access violation and make them much easier to locate.

Uninitialized Variables

In the course of normal execution, a program allocates space for variables by using temporary memory buffers. These variables and memory buffers are not always set to a known value when they are allocated. Your program should not read these variables and memory buffers until they have been initialized to a known value. It is impossible to predict the value of an uninitialized variable and how that value will affect the program execution.
Assuming that an uninitialized variable will contain a certain value based on compiler or linker properties and behaviors is also extremely risky. Compiler behavior can depend on the version of the compiler as well as the processor architecture. Consequently, the only way to be certain that a function will act as it should is to ensure that all variables are initialized before they are used.

Race Conditions

A race condition occurs when two or more threads try to access the same data at the same time without using any specific synchronization mechanism to coordinate the access. Race conditions can also occur when a synchronization method is used improperly. In these cases, the specific value of the data item depends on which thread accessed it first. The actual value that a thread might read is difficult, if not impossible; to predict because the order that the threads will access the data often depends on external factors and can be different in each instance.
Debugging Common Program Errors
This section describes some of the methods that you can use to identify the more common program errors. The approach used in this section is to look for the obvious and common problems first and then, after ruling those out, to look for the more complex and obscure problems.
Unfortunately, describing how to locate more complex problems is beyond the scope of this paper. Following the steps that are described in this section, however, will help you either find the problem or collect the information that is necessary for someone else to investigate the problem.

One other consideration to remember is that locating an error in a program does not, necessarily, tell you where to correct the error. Because of this, you should be sure that you fully understand the nature of the error before changing the program code to correct it.
Debugging Null Pointer Errors
Null pointers are a common program error and they are relatively easy to identify or rule out. Because of this they are the first type of error to examine.

Data Collection
Dump the current contents of the CPU’s registers using the r command in the debugger.
0:000> r
eax=00000000 ebx=00100000 ecx=7ffdf000 edx=4d53ea60 esi=00000000 edi=00000001

eip=4d511427 esp=0006d5f0 ebp=0006d604 iopl=0 nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246

gdi32!vFreeMHE+22:

4d511427 8b868c000000 mov eax,[esi+0x8c] ds:0023:0000008c=????????

You can use the dv command in the debugger to dump the local variables for the module and determine if the error is in a local variable. The following sample illustrates the dv command in a function that has a null pointer error.

Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000000 ebx=7ffd5000 ecx=d1353a0b edx=10310bf0 esi=0012fd90 edi=0012fe74

eip=004113f9 esp=0012fd90 ebp=0012fe74 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246

NullLcl!BadFunction+0x59:

004113f9 c7000a000000 mov dword ptr [eax],0Ah ds:0023:00000000=????????

0:000> dv -i -t -V

prv local 0012fe60 @ebp-0x14 int * piLocalVar = 0x00000000

prv local 0012fe6c @ebp-0x08 int iLocalVar = 5

In this example, an access violation was reported in the NullLcl!BadFunction module by the debugger . The local variables for this function were dumped by using the dv -i -t -V command and piLocalVar is listed in the output of the dv command as a local variable of type int* (a pointer to a variable of type int) and it has a value of 0x00000000. This indicates a null pointer error.
Analysis

1. Examine the memory reference display that follows the assembly language instruction line. This is the last line of the r command output. In this example, the memory reference is: ds:0023:0000008c=????????
2. If the value of the memory reference is shown as question marks, as in this example, then the instruction was attempting to access invalid memory. If the memory address, the value to the left of the equal sign, is less than 0x00001000, then it is probably a null pointer error. Remember that null pointer errors do not have to have an address of 0x00000000. Continue with the analysis to confirm the error.
3. Look at the assembly language listing. In this example, the instruction is a mov (memory move) instruction. The brackets around the term on the right side of the comma indicate a memory reference in the data segment; the contents at that location are to be written into the eax register. In this example, the move instruction was attempting to read from the memory at [esi+0x8c].

4. The source address that is specified within the brackets uses the esi register as the base value of the address and then adds the fixed offset of 0x8c to identify the actual memory location.

5. The register display shows that esi has a value of 0x00000000 or a null pointer.

Conclusion

In this case, the instruction attempted to use a null pointer in a memory move. Even though the memory address attempted was not zero, it used zero as the base address.
The symbolic reference above the assembly language listing, gdi32!vFreeMHE+22 in this case, tells you the module and the location of the faulty instruction. This location is also displayed by the call stack that is dumped by the k command in the debugger.

If you are debugging with the WinDbg debugger and have the source code loaded, the debugger will stop on the source code line that has the error. The symbolic variable that has a NULL pointer will be in that line.

A null pointer error can also occur in the destination address of a move instruction or a string move instruction. The destination address appears to the left of the comma in a move instruction. In a string move instruction, the esi and edi registers contain the source and destination addresses.

Next Steps

In a null pointer error, you will need to examine the instructions or calls that precede the error to find out where the zero address was assigned.

If the address values for the instruction are not zero or are not based on zero, then you can reasonably rule out a null pointer error and continue your debugging.

Debugging Buffer Overruns
C functions such as memcpy or strcpy that move or copy data can cause buffer overrun errors if the program does not correctly compute the buffer size required in advance or test for sufficient size during execution. After null pointer errors, buffer overrun errors are the next most common error. High-level language functions such as memcpy or strcpy frequently appear as rep movs or repne scasw instructions in x86 assembly language.

Data Collection
Examine the register dump. Look at the cx, es, esi, ds, and edi registers. These registers control memory move instructions. The following example shows the output from an r command after the system broke into the debugger during a memory move.

0:001> r
eax=7ffdf000 ebx=00000001 ecx=00000020 edx=00000003 esi=009dffcc edi=01257800

eip=77f75554 esp=009dffcc ebp=009dfff4 iopl=0 nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000246

77f75554 f3a5 rep movsd ds:009dffcc=77f5f1af es:01257800=????????
The bold text in the output of the r command shown above indicates where you should look first. Confirm that this is a memory moving instruction. If it is, check the data reference display for any memory access errors. These errors are indicated by the question mark display (????????). If there are no data access errors, then the error is probably something other than a buffer overrun error.
Hint

If the address with the memory error, that is the question mark display, is the beginning of a virtual memory page, then the problem is probably the result of a buffer overrun. For computers that have 4096-byte virtual memory pages, this will be an address that ends in 000(hex). For example, the address of 0622F000 would be at the beginning of a virtual memory page on a system with 4096-byte virtual memory pages.
Analysis
6. Confirm that this is not a null-pointer error by making sure that the esi (source address register) and the edi (destination address register) registers do not have zero values. If they do, then this is a null-pointer error. If not, then continue the analysis.

7. Dump the memory contents from the source and the destination addresses using the dc (display memory) debugger command. This command will display the data that is in the buffers being moved. The following example shows a sample output of the dc command.
0:001> dc @esi
009dffcc 77f5f1af 00000005 00000004 00000001 ...w............

009dffdc 009dffd0 88ef3390 ffffffff 77fa7d40 3......@}.w

009dffec 77f511d0 00000000 00000000 00000000 ...w............

0:001> dc @edi
01257800 ???????? ???????? ???????? ???????? ????????????????

01257810 ???????? ???????? ???????? ???????? ????????????????

01257820 ???????? ???????? ???????? ???????? ????????????????

8. As shown in the assembly language listing of the register display, the memory referenced by the edi register is invalid.

9. If a move instruction went beyond the end of a valid memory buffer, the memory just before the error would contain valid data. Use the dc command to see if that is the case. The following example shows the contents of the 16 bytes (0x10) of memory before the current destination address in edi.
0:001> dc @edi-10
012577f0 64636261 68676665 6c6b6a69 006f6e6d abcdefghijklmno
01257800 ???????? ???????? ???????? ???????? ????????????????

01257810 ???????? ???????? ???????? ???????? ????????????????

01257820 ???????? ???????? ???????? ???????? ????????????????

10. The 16 (0x10) bytes of memory just before the memory referenced by edi appear to be accessible and have valid data. If you knew more about the program, you could further verify the contents of this buffer.
11. When you enable the Heaps test in AppVerifier, you can use the !heap –p –a command in the debugger on the initial memory address of the buffer to learn the size that was allocated for the buffer. You can then compare that size with the difference between the address that failed and the initial buffer address. If the difference between the address that failed and the initial buffer address is greater than the size allocated for that buffer then the error is a buffer overrun error.

Conclusion

Because the contents of the memory just before the current destination address was valid and seemed to be accessible, it would appear that the move instruction failed when it tried to write past the end of the destination buffer.
This type of error can also occur when the memory referenced by the esi register is invalid and the memory referenced by the edi register was valid. In that case the move instruction would be trying to read past the end of an otherwise valid source buffer.

Next Steps

If there is a problem with the source or the destination memory buffers, examine the source code to see how or where the actual size of the memory buffer got out of sync with the size described in the move instruction.

If the memory before the current source or destination address is invalid and displays ????????, it is possible the memory heap was corrupted and you will need to continue troubleshooting.
Heap Memory Corruption
Many programs allocate and free temporary data buffers from an area of the process’s virtual memory called the heap. Programs can use heap memory to provide temporary buffers very efficiently; however, the program designer must ensure that the program uses these temporary buffers correctly. Incorrect access can corrupt the internal structures of the heap and corrupt data that is used by other parts of the program. Problems that result from the improper use of heap memory are commonly called heap corruption errors.

One cause of heap memory corruption is when a program frees a temporary data buffer and then attempts to access that block of memory later. This is not permitted and can cause an access violation under some conditions; however, it can also go undetected for a long time in normal use which makes this type of error very difficult to find.
It is essential to enable the Heaps test in AppVerifier to make it possible to find this type of error. Using the Heaps test in AppVerifier causes this type of error to generate an access violation. Without the Heaps test, this type of program error can easily go undetected during internal testing and only appear on a customer's system.
Data Collection
Dump the CPU's registers by using the r command in the debugger.

0:001> r
eax=04a66fe8 ebx=007f0000 ecx=00000000 edx=03370fe0 esi=00100000 edi=c61006bf
eip=77b83240 esp=0336ca48 ebp=0336cc70 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010206
GDI32!MF_InternalCreateObject+117:
77b83240 8b00 mov eax,[eax] ds:0023:04a66fe8=????????

In this example, the brackets that surround the eax term in the instruction indicate that address of the memory to be read by the instruction is stored in the eax register. In this example, the data in the memory that is addressed by the contents of the eax register will be copied into the eax register. This is a simple move as opposed to a string or block memory move so the only address of interest is the address that is currently stored in the eax register: 0x04166fe8.

Analysis

12. To determine if this memory address is part of a memory heap, use the !heap command in the debugger to display more information about that particular memory location. The following example shows the results of the !heap command that was executed after the registers were dumped in the previous step.
0:001>!heap –p –a 04a66fe8
PAGEHEAP: 04a66fe8 references freed heap block at 04a66fe8 of 0x18 bytes [Trace @ 1DEBF4]

001dec00 77f2b958 ntdll!RtlFreeHeap+0x104 [d:\dnsrv\base\ntos\rtl\heap.c @ 3525]
001dec04 567a9817 verifier!AVrfpRtlFreeHeap+0xa7 [d:\dnsrv\base\win32\verifier\heap.c @175]
001dec08 77e3fb7a kernel32!LocalFree+0x27 [d:\dnsrv\base\win32\client\lmem.c @536]
001dec0c 77b79f0b GDI32!bDeleteLink+0x8e [d:\dnsrv\windows\core\ntgdi\client\metasup.cxx @ 1738]
001dec10 77b85482 GDI32!vFreeMHE+0x138 [d:\dnsrv\windows\core\ntgdi\client\metasup.cxx @ 1129]
001dec14 77b84ed6 GDI32!vFreeMDC+0x94 [d:\dnsrv\windows\core\ntgdi\client\metasup.cxx @ 309]
001dec18 77ba5790 GDI32!UnassociateEnhMetaFile+0x2d0 [d:\dnsrv\windows\core\ntgdi\client\metafile.cxx @ 808]
001dec1c 77b9dd67 GDI32!MFP_InternalEndPage+0x1b4 [d:\dnsrv\windows\core\ntgdi\client\print.c @ 1339]
001dec20 77b9e023 GDI32!MFP_EndPage+0xd [d:\dnsrv\windows\core\ntgdi\client\print.c @ 1550]
001dec24 77b99974 GDI32!InternalEndPage+0xbb [d:\dnsrv\windows\core\ntgdi\client\output.c @ 2889]
001dec28 77b99a1b GDI32!EndPage+0xd [d:\dnsrv\windows\core\ntgdi\client\output.c @ 2958]
001dec2c 01008c6c printdrvstress!RenderlibWorkItem::Process+0x3ac [d:\nt\printscan\testsrc\printing\src\drvstress\drvstress\renderlibworkitem.cpp @ 133]
001dec30 010095cd printdrvstress!ThreadPool::ThreadFunc+0x16d [d:\nt\printscan\testsrc\printing\src\drvstress\drvstress\threadpool.cpp @ 128]
001dec34 567a524e verifier!AVrfpStandardThreadFunction+0x5e [d:\dnsrv\base\win32\verifier\thread.c @ 517]
001dec38 77e41b87 kernel32!BaseThreadStart+0x34 [d:\dnsrv\base\win32\client\support.c @ 533]

13. The first line of the !heap command output indicates that this instruction tried to access a memory location that was in a heap buffer that had been freed. The output then dumps the call stack to show where that buffer was freed.
Conclusion

The Heaps test in AppVerifier and the !heap command make it easy to identify this type of improper heap access. Sending the information from the r, k and !heap commands to the developer of the code that contains the error will make it much easier for them to find and correct this problem.

Next Steps

If you identified that the program was trying to access a memory location in a heap that had been freed, follow the call stack in the output of the !heap command to find where the memory buffer was freed and then determine why the buffer was freed too soon or the memory was accessed when that buffer was no longer valid.

If the !heap command indicates the invalid memory address is not part of a heap, then it might be another type of program variable or another type of program error and you should continue debugging.
Memory Access “Race” Conditions
Memory Access “race” errors occur when the value of a data element depends on a sequence that is not managed by the program, in other words, it is a race to determine the value of the data. This is most common in multi-threaded applications that have poor or no synchronization between the threads or when data elements are used by the different threads. Fortunately, printer drivers rarely start separate threads, so this is not a common error when you are debugging a printer driver.

Data Collection
The first step in the data collection phase is to use the k command in the debugger to dump the call stack and show where the program stopped executing.

0:013> k
ChildEBP RetAddr

04deff94 74307364 BadCode!pjmClrState+0x30

04deffb4 77cd290a BadCode!_ppprn_working_thread+0xba

04deffec 00000000 kernel32!BaseThreadStart+0x37

Then enter the r command to dump the registers and see the instruction that was executing when the error occurred as well as to see the data that was being accessed by the instruction.

0:013> r
eax=00000000 ebx=ffffffef ecx=00000006 edx=742f2060 esi=07653fb8 edi=74311548 eip=74307e36 esp=04deff8c ebp=04deff94 iopl=0 nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246

BadCode!pjmClrState+0x30:

74307e36 215e08 and [esi+0x8],ebx ds:0023:07653fc0=????????

The register dump indicates that the last instruction tried to perform a logical AND of the value in ebx with the data referenced by [esi+0x8]. The ???????? notation indicates an inaccessible location and the address of this location, 0x07653fc0, the sum of the value in the esi register, 0x07653fb8, and 0x8, is the destination address of the instruction.
Analysis

At this point, you know that an instruction attempted to access a bad memory location and in this section you will look for the reason why this occurred.
14. Determine if the inaccessible memory location is part of a memory heap. If it is, the !heap command will display the contents of the heap that contains the inaccessible memory address as well as additional information about that section of memory.

0:013> !heap -p -a 07653fc0
PAGEHEAP: 07653fc0 references freed heap block at

 07653fa8 of 0x0854 bytes

 Trace @ 04fc28f0: 00000000 bytes, 0 blocks (heap @ 00000000)

 [abcdaaaa, 936, 16]

 ffffffff +0xffffffff

 5ad12345 verifier!AVrfpRtlFreeHeap+0x00000013

 74301a82 BadCode!memFree+0x0000001c

 74307ae0 BadCode!pjm_DelEntry+0x00000038

 74307d62 BadCode!pjmRemoveOldEntries+0x00000035

 74305ac0 BadCode!ppjob_IppEnuRsp+0x00000240

 74309ea1 BadCode!CPortMgr::SendRequest+0x00000052

 743042a4 BadCode!CInetMonPort::SendReq+0x00000028

 74304456 BadCode!CInetMonPort::SendReq+0x0000004b

 74306227 BadCode!ppjob_EnumForCache+0x00000081

 74303612 BadCode!EnumJobsCache::FetchData+0x00000033

 743036f3 BadCode!CacheMgr::GetFetchTime+0x00000025

 7430381b BadCode!CacheMgr::TransitState+0x000000ad

 743038c7 BadCode!CacheMgr::WorkingThread+0x00000039

 77cd290a kernel32!BaseThreadStart+0x00000037

15. The output of the !heap command shows that the memory address is part of a heap memory buffer that was freed before this instruction was called. The output of the command also contains the stack trace of the last command to free that memory block. BadCode in this listing is the name of the module.
16. To differentiate between the simple case of accessing freed memory that was described in the previous section and the more complex case of a race condition, you will need to determine if the thread that failed was the same as the thread that freed the memory most recently. If they are the same thread, for example, if the process or driver is single threaded, it is probably the simple case. If the thread that freed the memory is different from the thread that accessed the memory, the error could be caused by a race condition.
17. With printer drivers, if the driver started another thread, the function called when the thread was started is usually listed in the second line from bottom in a stack trace.

NOTE:

There are few exceptions from this general rule: it might be the third line if the thread was started with _threadstartex or family like:

01c0ff80 6a66e532 mstscax!CUT::UTStaticThreadEntry+0x17
01c0ffb4 77e7d33b mstscax!_threadstartex+0x6f
01c0ffec 00000000 kernel32!BaseThreadStart+0x37

OR in case of verifier thread:

0117ff74 5ad12b07 MSDTCTM!DTCDummy+0x11
0117ffb4 77e79988 verifier!AVrfpStandardThreadFunction+0x57
0117ffec 00000000 kernel32!BaseThreadStart+0x37

18. Review the stack trace from the thread causing the access violation that was taken during the data collection steps.

0:013> k
ChildEBP RetAddr

04deff94 74307364 BadCode!pjmClrState+0x30

04deffb4 77cd290a BadCode!_ppprn_working_thread+0xba
04deffec 00000000 kernel32!BaseThreadStart+0x37

19. The output of the stack trace shows that BadCode!_ppprn_working_thread was the function that was called when the thread was started.
20. Review the stack trace of the thread that originally freed the memory block that the !heap -p -a 07653fc0 command returned in the previous example. This output is also repeated here.
5ad12345 verifier!AVrfpRtlFreeHeap+0x00000013

74301a82 BadCode!memFree+0x0000001c

74307ae0 BadCode!pjm_DelEntry+0x00000038

74307d62 BadCode!pjmRemoveOldEntries+0x00000035

74305ac0 BadCode!ppjob_IppEnuRsp+0x00000240

74309ea1 BadCode!CPortMgr::SendRequest+0x00000052

743042a4 BadCode!CInetMonPort::SendReq+0x00000028

74304456 BadCode!CInetMonPort::SendReq+0x0000004b

74306227 BadCode!ppjob_EnumForCache+0x00000081

74303612 BadCode!EnumJobsCache::FetchData+0x00000033

743036f3 BadCode!CacheMgr::GetFetchTime+0x00000025

7430381b BadCode!CacheMgr::TransitState+0x000000ad

743038c7 BadCode!CacheMgr::WorkingThread+0x00000039

77cd290a kernel32!BaseThreadStart+0x00000037

Conclusion

The function that started the thread that freed the memory block is BadCode!CacheMgr::WorkingThread. Because it is different from the thread that had the access violation, this error is most likely the result of a race condition.

Next Steps

Using the information that you obtained from this analysis, the source code of these functions should be analyzed for faulty or missing synchronization. This type of memory access problem can be prevented by improving the synchronization of the memory access or ensuring that the correct memory addresses are used.

Uninitialized Variables
Identifying uninitialized variables from within the debugger can be difficult because the uninitialized value is often not an obvious number such as 0 as is the case with a null pointer. Sometimes the value can look like another type of variable. For example a pointer variable that seems to reference valid text. The value of the variable can sometimes appear correct depending on the previous use of memory location that the variable is using.

Because this type of problem is very difficult to reproduce, it is especially important to log your debugging session and saving a full minidump of the system. With this information you can have another developer help you troubleshoot the problem.
NOTE:
Sometimes these errors can be trapped at compile time by using a source code analyzer or enabling compiler warnings.
Resolving the Problem
Unless you are the developer who is responsible for fixing the problem, you will most likely collect data for someone else to resolve the problem. When you collect detailed information, it will be easier for the developer to locate and correct the problem in the source code.

In cases where the problem might be difficult to reproduce, it might help for the developer to debug the program remotely. If you are running the NTSD debugger from within a remote console window, you can send the name of the remote session and the name of the computer you are running it on to another person and allow him or her to debug the problem from another computer.
Glossary
Access violation exception
An access violation exception occurs when a program attempts to access an invalid or inaccessible memory location. The numeric code for this exception is 0xC0000005.
Printer drivers cannot generate unhandled exceptions. If one occurs in a printer driver, it should be reported immediately. To support the security and reliability goals of Windows Vista, printer driver testing enforces a zero-tolerance of access violation exceptions as much as possible.
Access violation
See Access violation exception

AV
See “access violation”

Break into the debugger

When a program encounters an error that neither the program nor the operating system can handle successfully, the operating system halts the program. If a debugger is attached to the computer or the program, the program will halt in the debugger so a user of the debugger can investigate the nature of the problem further. This is known as breaking into the debugger.

A program can also be programmed to break into the debugger by inserting breakpoints in the program. Breakpoints are most commonly found in ASSERT statements. ASSERT statements (ASSERTs) contain program instructions that are only available in checked builds. An ASSERT statement tests parameters and conditions of the program that were specified by the program developer. If the test fails, the program will break into the debugger.
CDB

The console debugger. This debugger uses the same interface as the NTSD debugger and is described in the debugger.chm in Debugging Tools for Windows.
Checked driver
A checked driver is an executable driver file compiled without optimizations and contains debugging information such as ASSERT statements. ASSERT statements are additional tests that a program developer inserts in the compiled version of a checked driver to help detect invalid or illegal conditions.
A checked driver is used only for testing and development.

Exception

Exceptions are unusual situations that occur in a program and must be handled in order for the program to continue. Some exceptions are expected to occur in the normal course of the program so the program has have special functions, known as exception handlers, that it calls in those cases.

When an exception occurs during the execution of a program, the operating system first passes control to the debugger. The debugger can stop the program for the debugger user to interact with the program through the debugger or it can pass control to the exception handler function in the program. If the program has no exception handler for that exception then control is passed back to the operating system for a second chance to handle it. If the exception remains unhandled and a debugger is attached, the program will break into the debugger to allow someone to investigate the problem. If a debugger is not attached, the program halts in error.

Because printer drivers are running in the spooler, they cannot have unhandled exceptions because they would cause the spooler to crash. Some exceptions, such as Access Violation Exceptions, Invalid Handle Exceptions and Integer Divide-by-Zero exceptions, are not permitted to occur in the spooler even if they are handled by the program.
Printer drivers should keep the use of exception handling to a minimum and completely avoid using exception handlers to catch access violation exceptions because:

Exceptions in C/C++ are very expensive in terms of runtime performance. It’s usually much faster to simply check pointers for NULL before using them.
Exception handlers introduce multiple exit points for a function which makes stack frames and the program logic hard to follow. This can make it difficult to troubleshoot and maintain the module. Checking for NULL pointers is much simpler and easier to follow.

During testing, debuggers break on first-chance access violations--the exceptions that will be handled, but have not yet been handled. When you check for NULL pointers this way, the testability of the driver suffers because the test will frequently break into the debugger during otherwise normal program execution. Because of this, the testing environment used at Microsoft considers all first-chance exceptions fatal.

Free driver
A free driver is an executable driver that was compiled with full optimization and with no debugging information or tests. This is the version that is shipped to customers.

Full memory dump
A full memory dump, also known generically as a dump file, contains a snapshot of a program’s internal memory contents and the operating system context. A full mini-dump file can be loaded into a debugger for someone to further analyze a problem after the original machine or application has been restarted.
A dump file can be sent to another person and does not need to be analyzed on the machine that generated it. It is a good idea, however, to include the symbol files with the dump file. Using the /ba switch with the dump command will save all the necessary files in a .CAB file. Additional information on using dump files is in the User-Mode Dump Files section of the Using Debugging Tools for Windows help file.
Heap corruption
Heap corruption is when the virtual memory used for temporary data storage by programs becomes unreliable because of incorrect access. Print drivers use an area of virtual memory known as heap memory for temporary data storage. Heap memory is very efficient source of small to medium-sized memory buffers. It requires that the program manage the allocation and the freeing of the buffers correctly to prevent errors. Failure to do this correctly can cause memory errors.
KD, KD debugger
The kernel debugger used for debugging kernel mode software. It requires a second computer connected to the computer under test to host the debugging console and is described in the debugger.chm in Debugging Tools for Windows.
NTSD, NTSD debugger

This console mode debugger for debugging user-mode programs. This debugger uses the same interface as the CDB debugger and is described in the debugger.chm in Debugging Tools for Windows.
OS
Operating system

Pageheap

Pageheap is a short name for the heap test in AppVerifier. This test tracks memory usage, heap corruption, and checks for incorrect heap access. Heap corruption can cause many program errors such as: access violations, the inability to print, “blue screen” errors, and system restarts. Enabling the heap test in AppVerifier makes these problems much easier to diagnose. The heap test in AppVerifier forces the program to break into the debugger immediately when a driver makes an improper memory access. With this information, you can trace back to the source code that contains the error much more easily.

Symbols

The symbols are the symbolic references that were defined in the original source code but have been removed from the executable file that is being debugged. The symbols make it easy for the programmer and tester to identify functions, variables and other source code references by name. Because the computer does not need them to execute the code and they make the executable files larger, they are often removed from the executable file and stored in a separate symbol file. The debugger can read the symbol file and associate code and memory locations with the corresponding symbols that are read from the symbol file to make the debugger output much easier to understand.

Target machine
The target machine is the computer that is being debugged when the debugger is running on a separate computer.
User-mode debugging

User-mode debugging is the process of debugging programs that are running in user mode.

Windbg
Windbg is the graphical interface, user-mode debugger. This is a source–level, graphical debugger and is described in the debugger.chm in Debugging Tools for Windows.
Understanding the Assembly Language Display
You might not always be able to see the source code while you are debugging. It is often necessary to debug by using only the assembly language display. Because most program errors involve moving data or attempting to move data, this section provides a brief overview of some of the more common data moving instructions in x86 assembly language and the data registers inside the processor. This is not a comprehensive course in x86 assembly language programming; rather it contains just enough information to help understand the debugger display while debugging memory problems.

Remember to record your debugging session to a log file when you research a problem that someone else will fix. The memory and register information as well as comments that describe the process that you used while troubleshooting and analyzing the problem will help the developer correct the error more quickly.

The debugger register display

The r (register) command shown in the following example displays the contents of the registers in the CPU as well as the current instruction.

0:000> r
eax=00000000 ebx=00100000 ecx=7ffdf000 edx=4d53ea60 esi=00000000 edi=00000001

eip=4d511427 esp=0006d5f0 ebp=0006d604 iopl=0 nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246

gdi32!vFreeMHE+22:

4d511427 8b868c000000 mov eax,[esi+0x8c] ds:0023:0000008c=????????

0:000>

The register display contains the following information:

Register contents
The contents of the CPU’s general purpose registers, instruction pointer register, stack pointer register, and base pointer register.
Flag values
The values of the flags in the flag register are displayed on the right end of the second line of the display
Segment register contents
The segment registers used by the memory manager are displayed on the third line of the display

Current executable instruction
The symbolic location and the virtual address and machine language instruction followed by the assembly language representation of the current instruction are displayed on the fourth and fifth lines.

Data access references
If the instruction involves moving data to or from memory, then the memory address and its contents are resolved and displayed at the end of the fifth line.

The x86 family of processors contains several 32-bit general-purpose registers that are when processing memory moving instructions. While most registers can be used for any purpose, the x86 registers are commonly used in the following roles:

General Purpose Registers
eax, ebx, ecx, edx
These registers are used temporarily to hold data that is necessary to process an instruction or group of instructions. The eax and ecx registers have specific uses in some cases:
eax is the accumulator for temporary variable storage and returning a function’s status value.
ecx is often used as a counting register for sequential or repeating instructions such as block move and string instructions.

Block Memory Move registers
esi, edi: used to hold the source and destination addresses for block memory move instructions

Execution registers
eip, esp, ebp: used to store the instruction pointer, stack pointer and base pointer during program execution.
Memory move instructions

The two most common sets of instructions used to move memory are the

mov
The format of this command is generally:
 mov <destination>,<source>
so the source data or the address of the source data will be found to the right of the comma, while the destination or destination address will be found to the left of the comma. For example, in the assembly language instruction:
 mov eax,[esi]
the brackets surrounding the esi indicate that value in the esi register is the address of the source data and the plain notation of the eax indicates that the data value found at that address will be stored in the eax register.
The opposite version of that would be the following:
 mov [edi],eax
where the value in the eax register will be stored at the location referenced by the edi register.

rep
The rep set of instructions move multiple bytes of data in a single instruction as described by the registers. The registers used must be initialized before the rep instruction can move the data. Once programmed, the move takes place when the computer executes the rep instruction. The registers used for this instruction are:
 esi - the address of the source memory buffer
 edi - the address of the destination memory buffer
 ecx - the number of bytes to move
In all memory moving instructions, it is critical that both the source and destination locations be valid, accessible memory locations. Fortunately, the debugger helps you determine this by trying to resolve the source and destination memory locations in the output of the r command. If the memory location is valid, the debugger will display a number that represents the data at that location. If the memory location is invalid, it will display eight question marks ???????? in place of a hexadecimal number.

References

Resources

Microsoft Hardware and Driver Central

includes links to Windows Driver Kits [WDK], Windows Hardware Compatibility Test [HCT] Kits, and Windows Logo Program requirements
http://go.microsoft.com/fwlink/?LinkId=82307

Application Verifier

http://go.microsoft.com/fwlink/?LinkId=82331
Debugging Tools for Windows

http://go.microsoft.com/fwlink/?LinkId=82308
Intel 64 and IA-32 Architecture Software Developer’s Manual Instruction Set Reference, A-M

 http://go.microsoft.com/fwlink/?LinkId=82309

Intel 64 and IA-32 Architecture Software Developer’s Manual Instruction Set Reference, N-Z

http://go.microsoft.com/fwlink/?LinkId=82310

January 30, 2007
© 2007 Microsoft Corporation. All rights reserved.

[image: image4.png]